По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Ярославль (4852)69-52-93 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64

www.dnfklapan.nt-rt.ru || dsf@nt-rt.ru

Клапан — ограничитель расхода AVQ (P_v 16)

Описание и область применения

AVQ является регулятором прямого действия для автоматического ограничения расхода преимущественно в системах централизованного теплоснабжения.

Клапан регулятора закрывается при пре-вышении заданной величины расхода.

AVQ состоит из клапана и регулирующего блока с диафрагмой и рабочей пружиной.

Основные характеристики:

- $\mu_v = 15-32 \text{ MM}$
- K_{vs} = 1,6-10 m³/ч;
- $P_v = 16 \text{ Gap};$
- величина фиксированного перепада давлений на дросселе ограничителе расхода регулятора AVQ ΔP_{др}: 0,2 бар;
- температура регулируемой среды (вода или 30% водный раствор гликоля) Т: 2–150 °С;
- присоединение к трубопроводу:

 резьбовое (наружная резьба) через резьбовые, приварные или фланцевые фитинги.

Номенклатура и кодовые номера для заказа

Пример заказа

Клапан—ограничитель расхода $\mathcal{A}_{y}=15$ мм, $\mathcal{K}_{vs}=1,6$ м³/ч, $P_{y}=16$ бар, $T_{\text{макс.}}=150$ °C, с приварными присоединительными фитингами:

- клапан AVQ Д_у = 15 мм, кодовый номер **003H6711**— 1 шт.; - приварные фитинги, кодовый номер **003H6908** — 1 компл.

Клапан AVQ поставляется в виде моноблока, включая встроенную импульсную трубку между клапаном и диафрагменным элементом. В комплект поставки не входят присоединительные фитинги, которые следует заказывать дополнительно.

Клапан AVQ

Эскиз	Д _у , мм	K _{vs} , м³/ч	Присоединение	Кодовый номер	
$\overline{}$	1,6			003H6711	
	15	2,5]	G ¾ A	003H6712
		4,0	Цилиндрическая наружная		003H6713
	20	6,3	трубная резьба по ISO 228/1, дюймы	G 1 A	003H6714
	25	8,0		G 1¼ A	003H6715
	32	10		G 1¾ A	003H6716

Примечание. другие версии регуляторов поставляются по спецзаказу.

Дополнительные принадлежности

Эскиз	Наименование	Д _у , мм	Присоединение		Кодовый номер
		15			003H6908
	Приварные	20		003H6909	
	присоединительные фитинги	25	_		003H6910
		32			003H6911
	Резьбовые присоединительные фитинги (с наружной резьбой)	15	Коническая наружная трубная резьба по EN 10266-	R 1/2	003H6902
		20		R 3/4	003H6903
lafii iffa		25		R 1	003H6904
		32	1, дюймы	R 11/4	003H6905
$\Pi_{-} = \Pi$	Фланцевые присоединительные	15			003H6915
		20	Фланцы, Р _у 25, по EN	l 1092-2	003H6916
	фитинги	25	,		003H6917

Запасные детали

Эскиз	Наименование	Д _v , мм	K _{vs} , м³/ч	Кодовый номер
			1,6	003H6863
	Вставка клапана	15	2,5	003H6864
			4,0	003H6865
		20	6,3	003H6866
		25	8,0	00246967
		32	10,0	003H6867

Регулирующий блок	Фиксированный перепад ΔР _{др.} , бар	Кодовый номер
	0,2	003H6825

Технические характеристики

Клапан-ограничитель

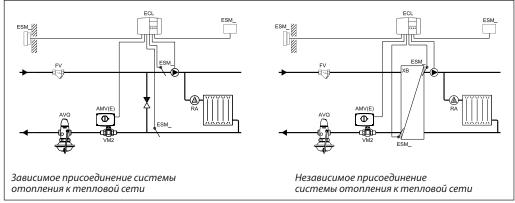
Условный проход $\mathbf{Д}_{\mathbf{v}}$		ММ		15		20	25	32
Пропускная способность K _{vs}			1,6	2,5	4,0	6,3	8,0	10,0
Диапазон настройки предельного расхода $G_{\text{макс.}}$ при фиксированном перепаде давлений на дросселе-ограничителе расхода $\Delta P_{\text{др.}} = 0.2 \text{ Gap}^{1)}$		м ³ /ч	0,06 ÷ 1,4	0,08 ÷ 1,8	0,09 ÷ 2,7	0,1 ÷ 4,5	0,1 ÷ 6,0	0,15 ÷ 7,3
Коэффициент начала кавитации Z				≥ 0,6 ≥ 0				
Протечка через закрытый клапан, % от Қ,			≤ 0,02					≤ 0,05
Условное давление P _v бар			25					
Макс. перепад давлений на клапане ΔР _{кл.} бар			12					
Мин. перепад давлений на клапане ΔР _{кл.} бар			см. примечания ²⁾					
Регулируемая среда			Вода или 30% водный раствор гликоля					
рН регулируемой среды			7–10					
Температура регулируемой среды Т °C			2–150					
	Клапан		С наружной резьбой					
Присоединение	Фитинги	Фитинги			у, резьбов бой), флан		жной	

Материал

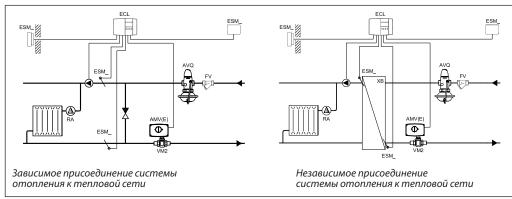
Корпус клапана	Красная бронза CuSn5ZnPb (Rg5)	
Седло клапана	Нержавеющая сталь, мат. № 1.4571	
Золотник клапана	Heoбесцинковывающаяся латунь CuZn36Pb2As	
Уплотнения	EPDM	

Регулирующий блок

Тип		AVQ
Площадь регулирующей диафрагмы	CM ²	39
Условное давление, Р _у		16
Перепад давления на дросселе — ограничителе расхода, ΔР _{до.}		0,2

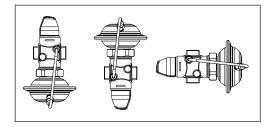

Материал

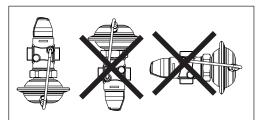
Корпус регулирующей диафрагмы	Оцинкованная сталь, мат. DIN 1624 № 1.0338		
Диафрагма	EPDM		
Импульсная трубка	Медная трубка Ø 6 x 1 мм		


 $^{^{1)}\}Delta P_{\partial p}$ — перепад на дросселе-ограничителе расхода. $^{2)}$ Зависит от расхода и пропускной способности клапана. Если регулятор настроен на предельное значение расхода, то $\Delta P_{min} \geq 0,5$. Если же значение настройки меньше максимальной, то $\Delta P_{min} = (Q/k_{VS})^2 + \Delta P_{\partial p}$.

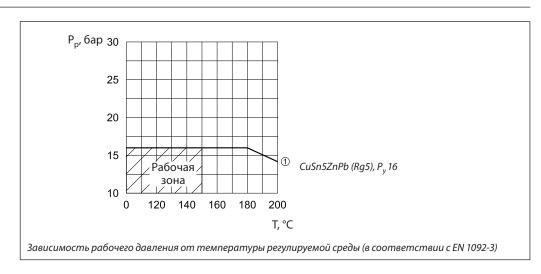
Примеры применения

Установка клапана на обратном трубопроводе


Установка клапана на подающем трубопроводе



Монтажные положения


При температуре регулируемой среды до 100 °C клапаны могут быть установлены в любом положении.

При более высокой температуре клапаны следует устанавливать только на горизонтальном трубопроводе регулирующим блоком вниз.

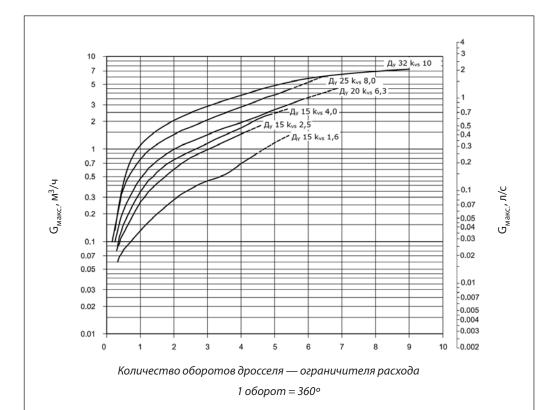

Условия применения

Диаграмма расхода

Диаграмма для выбора клапана AVQ и настройки ограничителя расхода

Зависимость между максимальным расходом и приблизительным числом оборотов дросселяограничителя

Расход может быть настроен вращением винта дросселя—ограничителя против часовой стрелки от закрытого положения на указанное на диаграмме количество оборотов.

Кривые расхода даны при перепаде давлений на дросселе 0,2 бар и на регуляторе в целом от 0,5 до 12 бар.

Примечание: для настройки регулятора на максимальные значения настройки расхода, необходимо использовать диаграммы из инструкции по эксплуатации.

Примеры выбора регулятора

Для зависимоприсоединенной к тепловой сети системы отопления

Пример 1

Требуется выбрать клапан AVQ для зависимо-присоединенной к тепловой сети системы отопления при предельном расходе теплоносителя $G_{\text{макс}} = 900 \text{ л/ч}.$

В узле регулирования установлен моторный регулирующий клапан. Потеря давления на нем составляет 0,2 бар.

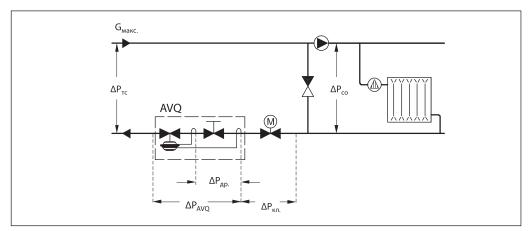
Исходные данные

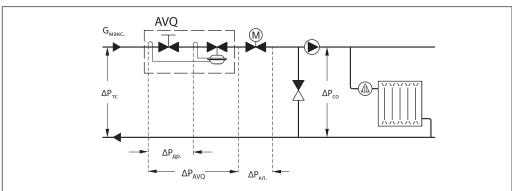
$$\begin{split} &G_{_{MAKC.}}=0,9~\text{m}^3/\text{u}.\\ &\Delta P_{_{TC}}=0,8~\text{6ap (80 kHa)}.\\ &\Delta P_{_{KI.}}=0,2~\text{6ap (20 kHa)}.\\ &\Delta P_{_{CO}}=0,1~\text{6ap (10 kHa)}.\\ &\Delta P_{_{AD.}}=0,2~\text{6ap (20 kHa)}. \end{split}$$

Примечание.

1. ΔP_{co} компенсируется напором насоса и не влияет на

выбор регулятора расхода. 2. Потери давления в трубопроводах, арматуре и т. д. в данном примере не учитываются.


Решение:


- 1. $\Delta P_{AVQ} = \Delta P_{\tau c} \Delta P_{\kappa \pi} = 0.8 0.2 = 0.6$ бар (60 κΠа).
- 2. По диаграмме (стр. 180) при $G_{\text{макс.}} = 0.9 \text{ м}^3/\text{ч}$ выбираем клапан с наименьшим $K_{\text{vs}} = 1.6 \text{ м}^3/\text{ч}$.
- 3. Проверяем фактический перепад давлений на клапане регуляторе:

$$\Delta P_{\text{AVQ}}^{\text{MMH}} = \left(\frac{G_{\text{MaKc}}}{K_{\text{VS}}}\right)^2 + \Delta P_{\text{д3}} = \left(\frac{0.9}{1.6}\right)^2 + 0.2 = \\ = 0.52 \text{ Gap (52 k\Pia)},$$

$$\Delta P_{AVQ} = 0.6 > \Delta P_{AVQ}^{MHH} = 0.52.$$

Результат проверки подтверждает правильность первоначального выбора клапана AVQ, $Д_y = 15$ мм, $K_{vs} = 1,6$ м 3 /ч и диапазоном настройки расхода 0,06–1,4 м 3 /ч.

Примеры выбора регулятора (продолжение)

Для независимоприсоединенной к тепловой сети системы отопления

Пример 2

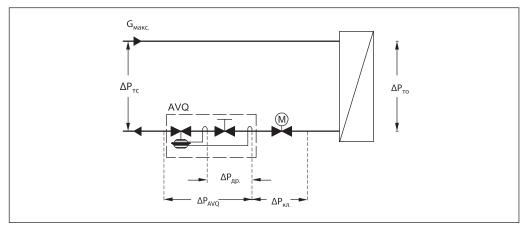
Требуется выбрать клапан AVQ для независимо присоединенной к тепловой сети системы отопления при предельном расходе теплоносителя $G_{\text{макс}} = 1500 \, \text{л/ч}$. В узле регулирования установлен моторный регулирующий клапан. Потеря давления на нем составляет 0,3 бар (30 кПа).

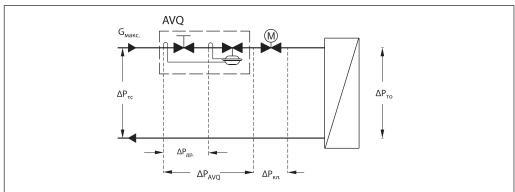
Исходные данные

$$\begin{split} &G_{_{MAKC.}}=1,5~\text{M}^3/\text{ч}.\\ &\Delta P_{_{TC}}=1,1~\text{6ap (110 kHa)}.\\ &\Delta P_{_{KЛ.}}=0,3~\text{6ap (30 kHa)}.\\ &\Delta P_{_{TO}}=0,1~\text{6ap (10 kHa)}.\\ &\Delta P_{_{AD.}}=0,2~\text{6ap (20 kHa)}. \end{split}$$

Примечание. Потери давления в трубопроводах, арматуре и т. д. в данном примере не учитываются.

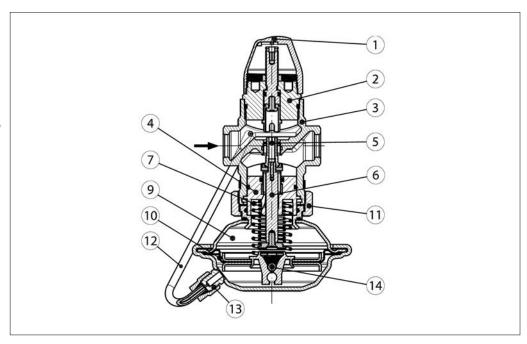
Решение


- 1. $\Delta P_{AVQ} = \Delta P_{\tau c} \Delta P_{\kappa \Pi} \Delta P_{\tau o} = 1,1-0,3-0,1 = 0,7$ бар (70 κΠа).
- 2. По диаграмме (стр. 180) при $G_{\text{макс.}} = 1,5 \text{ м}^3/\text{ч}$ выбираем клапан с наименьшим $K_{\text{vs}} = 2,5 \text{ м}^3/\text{ч}$.
- 3. Проверяем фактический перепад давлений на клапане регуляторе:


$$\Delta P_{AVQ}^{MHH} = \left(\frac{G_{MAKC}}{K_{VS}}\right)^2 + \Delta P_{A3} = \left(\frac{1.5}{2.5}\right)^2 + 0.2 =$$

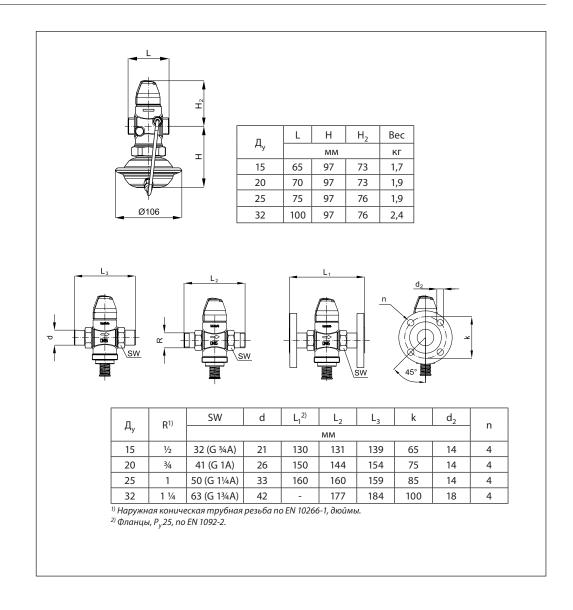
$$= 0.56 \text{ Gap (56 kHa)},$$

$$\Delta P_{AVQ} = 0.7 > \Delta P_{AVQ}^{MUH.} = 0.56.$$


Результат проверки подтверждает правильность первоначального выбора клапана AVQ $Д_y = 15$ мм с $K_{vs} = 2,5$ м 3 /ч и диапазоном настройки расхода 0,08–1,8 м 3 /ч.

Устройство

- 1 защитный колпачок;
- 2 дроссель ограничитель расхода;
- 3 корпус клапана;
- 4 вставка клапана;
- 5 разгруженный по давлению золотник клапана;
- 6 шток клапана;
- 7 пружина для ограничения расхода;
- 8 канал импульса давления;
- 9 регулирующий элемент;
- 10 регулирующая диафрагма;
- 11 соединительная гайка;
- 12 импульсная трубка;
- 13 компрессионный фитинг для импульсной трубки;
- 14 встроенный предохранительный клапан.


Принцип действия

Величина расхода определяется перепадом давлений на дроссельном клапане. Перепад давлений передается на регулирующую диафрагму через встроенную импульсную трубку и канал в штоке и поддерживается на постоянном уровне с помощью рабочей пружины регулятора. Клапан — ограничитель расхода снабжен предохранительным клапаном, который защищает регулирующую диафрагму от слишком большого перепада давлений.

Настройка

Настройка расхода производится путем установки дросселя—ограничителя в требуемое положение с использованием диаграмм (см. соответствующие инструкции) и/или по показаниям теплосчетчика.

Габаритные и присоединительные размеры

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Ярославль (4852)69-52-93 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64